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The method of moments appears to have some significant advantages over other variational 
methods of quantum chemistry if complicated molecular systems are investigated and elaborate 
variational wave functions are applied. The main advantages are (a) the possibility of avoiding the 
worst difficulties of integration or reducing the number of integrals (b) the possibility of improving the 
accuracy of the wave function in physically important regions of the configurational space and (c) 
the possibility of obtaining some "random sampling type" error estimates. The aim of the series of 
papers starting with the present one is to collect experience in applying the method of moments to 
problems of quantum chemistry. 

Die Methode der Momente scheint gegentiber den fiblichen Variationsmethoden in der Quanten- 
chemie einige bedeutende Vorteile zu besitzen, besonders wenn es sich um Untersuchungen kompli- 
zierter molekularer Systeme handelt, die nur mit umfangreichen Variationswellenfunktionen behandelt 
werden k6nnen. Die Hauptvorteile der neuen Methode sind: (a) Die bei der Integration auftretenden 
grol3en Schwierigkeiten bzw. die Anzahl der zu berechnenden Integrale k6nnen erheblich herabgesetzt 
werden. (b) In den physikalisch besonders wichtigen Bereichen des Konfigurationsraumes besteht 
die M6glichkeit, die Wellenfunktionen betr~ichtlich zu verbessern. (c) Es k6nnen Fehlerabsch~itzungen 
gemacht werden. Ziel dieser Arbeit ist es, erste Erfahrungen in der Anwendung der neuen Rechen- 
methode auf quantenchemische Probleme zu sammeln. 

La m6thode des moments parait poss6der des avantages nets sur les autres m6thodes variation- 
nelles de la chimie quantique si l'on 6tudie des syst6mes mol+culaires complexes et si l'on utilise des 
fonctions d'onde variationnelles perfectionn6es. Les avantages principaux sont a) la possibilit6 d'~viter 
les difficult6s les plus g6nantes de l'int+gration et de r6duire le hombre d'int6grales; b) la possibilit6 
d'am61iorer la precision de la fonction d'onde dans les r6gions de l'espace de configuration les plus 
importantes pour une observable, et c) la possibilit6 d'obtenir des 6valuations du type <<6chantillonnage 
au hasard, des erreurs commises. Le but de la s6rie d'articles qu'inaugure celui-ci est de pr6senter une 
information sur l'application de la m6thode des moments aux probl~mes de la chimie quantique. 

1. Introduction 

T h e  c o m p u t a t i o n  of  the  neces sa ry  in tegra l s  is one  of  the  b o t t l e n e c k s  of  q u a n t u m -  

c h e m i c a l  ab  in i t io  ca lcu la t ions .  Th i s  diff icul ty can  s ign i f ican t ly  be  r e d u c e d  if the  

m e t h o d  of  m o m e n t s  is a p p l i e d  to d e t e r m i n e  the  w a v e  func t ion .  T h e  a i m  of  the  
series of  pape r s  s t a r t i ng  wi th  the  p r e sen t  one  is to co l lec t  s o m e  expe r i ence  in 

a p p l y i n g  the  m e t h o d  of  m o m e n t s  to  p r o b l e m s  of  q u a n t u m  c h e m i s t r y  b o t h  by  
t heo re t i c a l  i n v e s t i g a t i o n s  a n d  by  t es t ing  the  m e t h o d  on  n u m e r i c a l  examples .  
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The method  of  moments  has two impor tan t  features which need to be briefly 
ment ionned in advance. 

(a) The more  complicated systems we investigate and the more  elaborate 
variational wave functions we use the more  significant the advantages of  the 
method of  moments.  It has e.g. little reason to determine the wave function of the 
ground state of  an isolated hydrogen molecule by the method of moments.  On  
the other hand  the method  of  moments  may  have very significant advantages if we 
investigate e. 9. an organic molecule adsorbed on a crystal surface, the crystal 
surface being modelized by a pseudopotential ,  or  if we carry out systematical 
ab initio or part ly ab initio calculations on a series of related molecules in order 
to predict some practically impor tan t  proper ty  of  them. In the following when 
speaking of  molecular  systems we shall tacitly think of complicated ones. 

(b) If  we do not  want  to loose the computa t iona l  advantages of the method  
of  moments  our  results may  appear  less r igorous than those obtained by certain 
other variational methods,  the method  of  energy variation, say. The error estimates 
that are available all have a probabil i ty character:  we can give an error estimate 
and at best a probabil i ty with which this error estimate is valid. It must, however, 
always be kept in mind that  as soon as we investigate complicated molecular  
systems the error  estimates of any other variational method applicable in practice 
become meaningless. In such cases the method  of moments  can prove one of the 
most  reliable methods  just because the ment ionned " r andom sampling type" 
error estimates provided by it are available also in complicated cases. 

In the next sections the basic ideas of the method  of moments  will be summarized 
with particular emphasis to those which seem impor tant  in quantumchemical  
applications and to those which are useful in compar ing  the method of moments  
with other variational methods  of quan tum chemistry. The next papers of the 
series mainly present numerical  results obtained by applying the method of  
moments  to molecular  problems. 

Brief historical survey. The first attempt to apply the method of moments to problems of quantum 
chemistry appears to be due to Montrol [1]. Montrol considered problems of solid state physics and 
the way he proceeded can hardly be applied to molecular problems as it requires the calculation of 
integrals involving higher powers of the Hamiltonian operator. Sporadic papers essentially along the 
same line followed Montrol's paper [2]. 

The use of the hypervirial relations for determining or improving molecular wave functions has 
been proposed by Hirschfelder [3], Epstein [4], Coulson [5] et al. The hypervirial relations are closely 
related to the method of moments. The papers dealing with the hypervirial relations called attention to 
the possibility of using the method of moments for improving molecular wave functions in physically 
important regions of the configurational space ("guided approximations" cf. also Preuss [6], Schwartz 
[71 Hall [8] and others [9]). 

The possibility of using the method of moments for reducing difficulties of integration has been 
considered by Szondy [10] and Boys [11]. 

2. Application of the Method of Moments to Problems of Quantum Chemistry 

Let H be the Hamil tonian  opera tor  of a molecular  system with eigenvalues 
Ei and eigenfunctions ~i(x) 

(H  - Ei) ~;i(x) = O ,  (1) 

( ~pi(x) l ~P a(X) ) = 6,j , (2) 

E ~ < E , + , ,  ( i = 0 , 1 , 2  . . . .  ) (3) 
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where x denotes a point of the configurational space. Let ~Ok(X, ~) be a variational 
wave function depending on the point c~ of the space of variational parameters 
el ,  e2, ..., e,. It will be assumed that ~Ok(X, ~) is normalized 

(Ok(X, cOl(ilk(x, ~)5 = 1, (4) 

and that the calculation of the integral 

E~e)(~) = (~o~(x, ~)l H [ (ilk(x, ~)5 (5) 

is too tedious to be possible or to pay off. (This is a fortiori true for integrals 
involving higher powers of H.) 

Let 

Wo(X ), w 1 (x) . . . . .  w,(x) (6) 

be a set of linearly independent functions to be referred to as weight functions. It 
will be assumed that the integrals 

( Wi(X) ] (fik(X , 00 5 , (7) 

( wi(x) l n l (fie(X, o0 5 (8) 

are finite, and simple enough to be calculated in practice. It will further be assumed 
that for every value of c~ at least one of the integrals (7) is non-zero and that none 
of the integrals (7) and (8) vanishes for every value of e because of trivial symmetry 
reasons. 

Evidently if for some c~ = e(") Ok(X, e(m)) =_ ~Pk(X) and gk (") = Ek then the equations 

(wi(x) lH _ g~,,) i (fik(X ' ~(m))) = 0 (9) 

are satisfied for any w~(x) satisfying the above conditions. If, however, (ilk(x, cd m)) 
does not coincide with ~k(X) then in general at most n + 1 equations of the form 
(9) can be satisfied by proper choice of the variational parameters c~! ") and g~"). 
Thus we have in this case a set of equations for the determination of the variational 
parameters and the energy. The Eqs. (9) will be referred to as basic equations of the 
method of moments. The integrals 

mi( E, c 0 = ( wi(x) l H - g l(fik(X, o0 ) (10) 

will be referrgd to as moments of (H - g) (fig(X, cO with the weight functions wg(x). 
Evidently the accuracy of g~m) and (ilk(x, ~(")) is dependent on the proper 

choice of the weight functions. Before discussing, however, the problem of how 
to find "good" weight functions attention must be called to a property of the 
Eqs. (10). 

As the moments are linear in the weight functions the results are unchanged 
if we replace the weight functions by any linearly independent linear combinations 
made up of them. This possibility can be used to orthogonalize all but one of the 
weight functions to (ilk(X, O0 i.e., we can always assume without loss of generality 
that the orthogonality relations 

(Wi(x)l(fik(X, O0)=O ( i= 1, 2, . . . ,n) (11) 
i9" 
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are satisfied. In this case the set of Eqs. (10) becomes decoupled in the sense that 
the equations with i = 1, 2 . . . . .  n serve for the determination of the variational 
parameters ~I ~) and they do not make any use of the value ofg~ m). Having determined 
~(m) in this way the value of g~m) can be determined from the 0'th equation 

~(m) = ( Wo(X) I H [ q)k(X' o~(m)) ) 
( Wo(X) I CPk(X ' ~(,.))) (12) 

3. The Problem of Constructing "Good" Weight Functions 

Let us start from the equation 

((Pk(X, ~)](H -- 8k) f ( x )  f * ( x )  (H -- 4)  ] ~0k(X, ~X)) = min (13) 

proposed by Preuss [6] for the determination of molecular wave functions, f ( x )  
denotes some weight function (not to be confused with the wi(x)'s) and serves 
for improving the wave function in physically important regions of the con- 
figurational space. If f ( x )  does not suppress the integrand of (13) in regions which 
are important for the energy, 8g may also be determined from (13). 

Let vi(x) ( i=0,  1,2,...) be a complete orthonormalized set of functions. 
Making use of the expansion 

[vi(x)) (vi(x')[ = 6(x  - x') (14) 
i = 0  

of the Dirac delta function (13) may be written as 

[( / (x)  vi(x) lH  - ,lffkl(tOk(X, ~))12  = min. (15) 
i = 0  

The values of the ~i's and of gk determined from (13) will be denoted by ~v) and 
8k tv), respectively. It can now be verified that the method of moments is equivalent 
to approximately solving (15) by truncating the infinite sum at i = n and introducing 
the notation wi(x ) =f(x)vi(x).  The question is: under what conditions will this 
truncation cause only small changes in the roots ~I ") and gk ~~ of (13). (It may be 
noted that in certain cases advantageous may be to truncate at some i >  n. It 
seems unlikely that such a generalization would drastically change the following 
conclusions.) 

Let us define the (finite) partial difference quotient of q~k(X, ~) between the 
points ~(1) and ~(2) of the space of the parameters by the line integral 

~(2) 

Dc h - c~2 ) - c~11 ) d~, ~c~i il (16) 

where il denotes the unit vector pointing in the direction of the ~i axis and the path 
of integration is the straight line connecting the points ~(1) and ~(z). The partial 
difference quotients defined in this way are generalizations of the respective 
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partial differential quotients  and have the proper ty  that  for finite 0{ (2)  - -  0{ (1 ) 'S  

~Ok(X, 0{(2)) = Oh(X ' ~(1)) + ~" D qOk(X I C~ ~ Cd a)) (0{5Z) _ 0{5t)) " (17) 
j= 1 Do~j 

Now by (9), (10), and (11) we can write 

<w,(x) l H  - gF~ I ~0~(x, c#~)> = m/(eF ), 0{("~) 

= ~ (W/(x)IH_g~kV)IDqgk(Xl0{(.,),0{(~))/D~j>(0{}~)_0{},,,)) (18) 
j = l  

and introducing the abbreviat ions 

Aij  = < wi(x)  [ H - W~kV) [ D q~k(X [ a ("), 0{(v))/D0{j> , (19) 

A ~j = _j~.~) - _~(-=) , (20) 

mi($~ ~), ~(~)) = ai , (21) 

we obtain 

~, A i j d ~ j =  6 i . (22) 
j = l  

Eq. (22) is a set of linear equat ions for the determinat ion of the 3 ~j. Evidently the 
exact values of the A~j's and the 6/'s are not  known {this would be equivalent to 
exactly solving (13)} but  we can still draw useful conclusions from (22). First we 
discuss some qualitative consequences of (22) which are useful in choosing "good"  
weight functions and then we turn to more  quanti tat ive post mor tem error  
estimates. 

Loosely speaking: (a) the smaller the FcS/]'s and (b) the larger ]Det(Aifll the 
smaller the IA~jrs. 

(a) If the integrals (wi(x)] wj(x)> are finite (this will be assumed in the following) 
we can - similarly to (11) - assume without  loss of generality that the weight 
functions form an or thonormal ized  set 1. 

Regarding the weight functions as the first n + 1 functions of an or thonormal ized  
complete  set and expanding (H - ~v)) ~o~(x, 0{(v)) in terms of this set we obtain 

2 1 ~ 1 
lal . . . . .  ge = - -  ~ 16il 2 < - -  (q~k(X, 0{W))I(H- Nk(V))2 I q~k(X, ~(v))> �9 (23) 

h i =  1 n 

A qualitative consequence of (23) is that  any improvement  of the wave function 
that  reduces the integral on the right hand  side of (23), and in particular such 
improvements  that  are due to an increase in the number  of variational parameters  
reduce the upper  limit for the average of the la/l>s. This result is obviously very 
satisfactory. 

(b) If we are interested in estimating the order  of magni tude of the [A ejl's we 
may make use of some approx imat ion  to the Aia'S, say, 

AIj ~ ( wi(x) l H - E,~'~) [ c3 ~Pk(X, 0{)/O~j)~ =,~=,. (24) 

�9 The norm of the weight functions does not influence the values of the A ~js. 
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It is not easy to give an absolute limit for [Det(Au) [ above which it is "large 
enough". The value of [Det(Aq)[ may be useful, however, in comparing different 
sets of calculations. Calculating in series using similar weight and wave functions 
it seems possible to obtain empirical lower limits for IDet(Au) I. In this sense the 
value of [Det(Au) [ appears to be the most important criterion for accepting or 
rejecting a set of weight functions. 

(c) Let us assume that the weight functions satisfy the orthogonality relations 
(11) and the usual symmetry, normalizability, continuity and differentiability 
conditions that must be satisfied by a variational wave function. In this case 
~Ok(X, e(")) has the important property (Hirschfelder [-3]) that it can not be improved 
within the framework of the method of energy variation by adding to it any linear 

combination of the form ~ fl~wi(x). Obviously if we want to obtain a wave func- 
~=~ 

tion which is a good approximation to ~Pk(X) in some domain D of the configura- 

tional space, the weight functions must be such that ~ fl~wi(x) is a highly flexible 
y l  

i = 1  
function in the domain D. 

We come now to the problem of post mortem error estimates. 
The 6is are the overlap integrals between the i'th weight function and the 

function (H - g(k v)) q)k(X, a(v)). (H -- g~)) (Dk(X, (X (v)) depends on the error in (0k(X , O~ (v)) 
which we do not know when we construct the weight functions. Both ( H -  k (")) 
�9 pk(X, Cd ~)) and the wi(x)'s are, in general, very complicated functions of the co- 
ordinates changing their sign at many hypersurfaces of the configurational space�9 
Consequently it has a small probability that 6~'s belonging to different weight 
functions are approximately equal both in their magnitude and in their sign. In this 
case, however, it has a small probability that the A~'s obtained from calculations 
carried out with different sets of weight functions will, accidentally, be approxi- 
mately equal both in their magnitude and in their sign. Thus if we calculate the 
ei's with two or more different sets of weight functions, it is probable that the 
differences between the cq's obtained in the different calculations will be of the 
same order of magnitude as the A ei's. The more complicated systems we investigate 
and the more sets of weight functions we use the higher the probability of obtaining 
in this way reliable estimates of the IA ei['s. 

Summarizing: The changes of the variational parameter caused by such 
changes of the weight functions which do not affect the order of magnitude of 
[Det(A~j)[ appear to provide a practical estimate of the order of magnitude of the 

The calculation of the integrals rni(gk (m), ~(")) with many different normalized 
wi(x)'s may even provide information about the norm of 

<~o~(x, ~(~)) 1 (H - ~)~ I ~o~(x, ~(~))> 
and consequently about the absolute error in q)k(X, Cd')). Somewhat oversimplified 
the problem is to obtain an estimate of the norm of a vector by calculating its 
scalar products with many random vectors of unit length and estimating the upper 
limit of the scalar products from their statistical behaviour. This problem is 
being investigated and will be discussed in a later paper of the series. We only note 
that even more interesting seems the application of such methods to the estimate 
(27). 
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There exists another  error estimate which is closely connected with the method of moments.  
Let us define the error in Ok(X, Ct) by 

Ilk(X, 0:) = (H - Ek) +~ (Ok(X, C~) (25) 

and let us consider the integral 

( w(x) I H - Ek ](Ok(x, ~)) (26) 

where w(x) is any normalizable function satisfying the same conditions as a variational wave function. 
Applying the Schwarz inequality to (26) and taking into account (25) we obtain 

I(w(x) lH - Ek I (ok(x, c~))] 2 
(llk(X' ~) I t/k(X' 00) ~ (W(X) I(H -- Ek)2lW(X)) (27) 

Thus (27) gives a lower bound for the norm of the error in (Ok(X, ~). In order to obtain an estimate of 
the order of magni tude of the error in (Ok(X, CQ we may introduce some variational parameters into 
w(x) and maximalize the right hand side of (27). If c~ (m) is determined by the method of moments  and 
the orthogonality relations (11) are satisfied the wave function (Ok(X, C~ (")) has the property that the 
error estimate (27) gives the value zero for any w(x) of the form 

w(x)= ~ fllwi(x). (28) 
i=i 

Finally we observe that if wo(x) is an approximation to ~pk(x), the value El m) 
defined in Eq. (22) is a reasonable approximation to Ek (cf. [11]). Let us namely 
denote the error in wo(x) by co0(x) 

coo (x) = (H - Ek) + o Wo (x) (29) 

and let us consider 

~(km ) __ Ek = ( W o ( x )  l n  - Eklq)k(X, ~(m))) (30) 
(Wo(X) l q~(x, o~(m))5 

Taking into account (25) we obtain 

(coo(x) l H - Eklqk(X, cdm))) 
g~') - Ek = (Wo(X) I(Pk(X, e(,,))) (31) 

As both Wo(X) and (,Ok(X, e(")) are approximations to VJk(X) the order of magnitude 
of the denominator of (31) is 1. On the other hand the numerator contains the 
small factors COo(X ) and rlk(X, oCm)). It is well known that the good energy values 
obtained by the method of energy variation are due to a similar effect. In the case 
of the ground state there is, however, an additional effect which may significantly 
reduce ]g~m) _ Ek] as compared with the value obtained by the method of energy 
variation. Namely in the case of the method of energy variation (i.e. in the case 
wo(x) = ~0o(X, ~(m))) the numerator of(31) can be written as 

< ( H  - -  Eo) I /2 t lo (X ,  ~z(m))l(H --  Eo) l /2r lo(X,  0~(m))> (32)  

while in the case of the method of moments we have 

<(H - Eo)l/2COo(X)l(H - Eo)l/2rlo(X, e(m))>. (33) 

In the later case there is a high probability that the positive and negative 
contributions to the integral compensate each other to a considerable extent. 
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The more complicated systems we are investigating the higher the probability 
of such a compensation. 

In the case of the method of energy variation no such compensation can take 
place. 

4. Some Types of Weight Functions 

Let us start with a general remark. The method of energy variation determines 
the values of the variational parameters from the condition 

g~e)(~) = (~0k(X, ~) I HI ~0k(x, ~)) = extremum. (34) 

(34) and (9) lead to the same values of the parameters if the weight functions are 
chosen as 

Wo(X) = ~ok(x, c~) , (35) 

wi (x )  = t3 Ok(x ,  o~)/t?ei (i = 1, 2 . . . .  , n) . 

Consequently we can expect to obtain an approximation to the wave function 
determined by the method of energy variation if the weight functions satisfy 

Wo(X) ~ Ok(X,  Ct), (36) 

Wi(X ) ~ ~ (Pk(X, 0~)/~0~ i (i = 1, 2 . . . . .  n) . 

It appears very advantageous to construct such weight functions in the 
following way. We choose a weight function w o (x, fl) which involves the parameters 
ill, f12, ..., ft,. The parameters fli should be "similar" to the ei's in the sense, that 
within a sufficiently large domain of the space of the ei's to every point e there 
should correspond a point fl = fl(7) of the space of the fli's such, that Wo(X, f l (a))  is 
an approximation to q~k(X, ~) 2. 

In this case the weight functions 

w ~  f l ) '  (37) 

w i ( x  , fl) = a W o ( X  , fl)/c~fli (i = 1, 2 , . . . ,  n) 

or appropriate linear combinations of them generally automatically satisfy (36). 
The wave functions (36) have a number of practical advantages. (a) They make 

the maximum use of the high amount  of numerical experience obtained so far by 
applying the method of energy variation to molecular problems. (b) By (4) the 
weight functions (35) automatically satisfy the orthogonality relations (11). Con- 

2 E.9. if q~k(X, C0 is a linear combination of some functions pi(x) 

~o~(x, c~) = ~ p~(x) ~ 
i=1  

and if the functions q,(x) are approximations to the respective p~(x)'s 

q i ( x )  ,~, pi(x) 

then we can choose Wo(X, fl) in the form 

Wo(X, fl) = ~" qi(x) fli. 
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sequently (t 1) can easily be fulfilled also by weight functions of the type (36). (c) If 
both (fig(X, ~) and the wg(x, fl)'s belong to the same irreducible representation of the 
symmetry group of the molecular system the value of Det (Ai~) wilt in most cases 
automatically be considerably different from zero. (d) As the order of the integra- 
tion over x and the differentiation with respect to the fli's is irrelevant, it is often 
sufficient to calculate the integrals (Wo(X, fl)]HI (fig(X, ~)) and (Wo(X, fl)[ (ilk(X, ~)) 
the others being obtained by differentiation with respect to the fli's 3 

Finally we shall give two examples of how can the freedom in the choice of the 
weight functions be utilized for reducing difficulties of integration (cf. also [11]). 

(a) Let us assume that we have a variational wave function ebk(X, ~) which is 
made up of one-electron spin orbitals. If we can not calculate the integrals 
(cbk(x, ~)[H] ~k(X, ~)) we can attempt to expand the one-electron spin-orbitals 
in the bras in terms of some simpler functions and calculate the integrals simplified 
in this way. This means that we solve the problem by the method of moments. In 
many cases it is necessary to expand the one-electron spin-orbitals in both the 
bras and the kets. Even in this case we can save much of the accuracy if we use 
more elaborate expansions in the kets than in the bras. An example for this 
possibility may be the case in which ~bk(x, ~) is made up of Slater functions and we 
expand them both in the bras as in the kets in terms of Boys functions 4, using, 
however, more terms in the kets than in the bras. In this case the number of 
integrals can significantly be reduced, and as the results of the next paper of the 
series indicate, the accuracy of the results is almost unaffected by this simplification. 

(b) Let us assume that the wave function (ilk(X, ~) is made up of spin-geminals 
which involve terms explicitly depending on the distance of the electrons. In this 
case the method of energy variation leads to integrals in which all the coordinates 
of the electrons are coupled inseparably. If, however, the weight functions are 
made up of one-electron spin-orbitals the most complicated integrals involve the 
coordinates of 4 electrons. It appears unnecessary to stress the possible gain on 
computer time. We only want to call attention to some important practical 
consequences. 

The decrease in the number of the coordinates involved in the integrals 
suggests that on high-speed computers these may be treated by numerical methods 
independent of the details of the form of the geminals. 

Let us denote the geminals comprising (ilk(X, ~) by u~(r, r') and the one-electron 
orbitals comprising Wo(X ) by vi(r ). By appropriate choice of the one-electron 
orbitals the "strong orthogonality relations" 

I dr f dr'vi(r) vj(r') uk(r, r') = ~ik 6,ik (38) 

3 The numerical calculations presented in the next paper of this series are all based on weight 
functions of the form (37). 

4 Throughout the papers of the series we shall refer to the functions 

N~.~ ,~ exp( - cr) r ~+t Y~.m(~, (P) 

as Slater functions and to the functions 

N,3,, . exp(- cr 2) r 2"+l Yl.m(~, rp) 

as Boys functions. 
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can be satisfied independent of the form of the geminals and the energy expression 
of the method of moments becomes very similar to that of the Hartree-Fock 
method (cf. Kapuy [12]). The details of this possibility will be discussed in a later 
paper of the series. 
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